Definition for Absolute Value

If a is a real number, then the absolute value of a is:

       \left | a \right |= \left\{\begin{matrix} a \\ -a \end{matrix}\right.        \begin{matrix} if a\geq 0\\if a<0 \end{matrix}

eg.   a=-5,    \left | a \right |=\left | -5 \right |=5

Properties of Absolute Values

1.  \left | a \right |\geq 0

2.  \left |- a \right |=\left |a \right |

3.  \left |ab \right |=\left |a \right |\left | b \right |

4.  \left |\frac{a}{b} \right |= \frac{\left | a \right |}{\left | b \right |},b\neq 0

Watch these free videos and review the concepts of order on the number line and absolute value.

Filed under: Pre-requisites for Pre-Calculus

Like this post? Subscribe to my RSS feed and get loads more!